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Titanium peroxides are of paramount importance in modern
stereoselective oxidation reactions. Thus, in the catalytic
enantioselective oxidation of allylic alcohols with alkyl hydro-
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Figure 1. Crystal structure of §),-3 CH,Cl,]. Tables of crystallo-

peroxides in the presence of titanium tetraisopropoxide and agraphic parameters along with a complete list of structural parameters

chiral tartrate diester to give the corresponding epoxides

are available in the supporting information. Hydrogen atoms have been

(Sharpless oxidation), a titanium peroxide was formulated as omitted for clarity.

the decisive intermediate A similar reagent was used by Kagan
et al. and Uemura et al. for the enantioselective formation of
sulfoxides from sulfides. The stereoselective oxidation of
tertiary amines tdN-amine oxides was also reported by Sharpless
et al® More recently, a titanium tetraisopropoxide catalyzed
intramolecular epoxidation of allylic hydroperoxides was es-
tablished by Adam et dl. This reaction as well as the oxidation
of titanium enolates with dioxygérand tert-butyl hydroper-
oxide? respectively, should similarly proceed via a titanium

bridged by lithium? In the following we report on the X-ray
crystal structure determination of f@tert-butylperoxo)ti-
tanatrane}3 dichloromethane] H),:3CH,Cl;] (Figure 1)°
which was prepared from the reaction of (diethylamino)-
titanatrane 112 with tert-butyl hydroperoxide2 in dichlo-
romethane at-78 °C (Scheme 1).

The dichloromethane molecules (mean value of theCC
bond lengths 174.1 pm (mean value in 1 044 crystal structure

peroxide. There are several reports in the literature on the determinations 172.2 pt¥)) are independent of the{-tert-
attempted isolation and characterization of the titanium peroxide butylperoxo)titanatrane dimerd)(? The bonding around Til

complex involved in the Sharpless epoxidation; however, a
species containing the peroxide moiety was never repérted.

shows thej2-coordination of the anionic O1 (TH01 191.3(3)
pm) and the neutral O2 (TH02 226.9(2) pm) peroxide oxygen

Because of the assumption that the peroxide should generallyatoms. The bond to N1A amounts to 229.9(3) pm while the

be bonded to the titanium atom in gf-fashion? the vanadi-
um(V) dipicolinatotert-butyl peroxidé deserves special inter-
est: itis so far the only transition metal peroxide with such an
n?-bonding mode, as shown in an X-ray crystal structure
determination. We found recently that in the crystalline (lithium
tert-butyl peroxide), the two oxygen atoms are similarly-
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The mean value of the ©0 bond length in 18 compounds of
the typen-MOOR amounts to 146.7 p#A.

There are many reports on model calculations of the Sharpless
epoxidation reaction in the literatuté. In agreement with the
experimental result shown aboy&coordination of the peroxide
oxygens is found. In a density functional stdtiof a model
complex the calculated bond lengths of Ti to the anionic oxygen
atom (190.6 pm) and to the neutral oxygen atom (229.4 pm)
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Ti(7>-O0H)(OH) 149.2%4d however, see also Tj-OOH)-
(SH)H3 144.6 pmic We cannot explain the discrepancy
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Torr), followed by warming of the reaction mixture to 2C
and protonation wit 2 N HCI, yielded phend® in 78% (Scheme
2). This is in agreement with our earlier findings that titanium
alkyl peroxides transform organolithium and Grignard com-
pounds at low temperature-{8 °C) into the corresponding
alcohols (phenols) in good to excellent yields.

In conclusion, we have determined for the first time the X-ray
crystal structure of a titanium alkyl peroxide. Th&structure
of [(4)2»3CH,Cl;] is in agreement with earlier assumptions and
calculations of the ground state structure of such alkyl peroxides,
as well as with models of the transition states of oxidation
reactions of various nucleophiles. The importancgdfonded
transition metal peroxides in oxidation reactions has been
reemphasized recently.
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crystal structure determination data, atomic coordinates, equivalent
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between the shorter experimental bond length and longer This material is contained in many libraries on microfiche, immediately
calculated G-O bond lengths at the moment, especially since follows this article in the microfilm version of the journal, can be
4 shows strong oxenoid character in reactions with nucleo- ordered from the ACS, and can be downloaded from the Internet; see

philes!® Thus, [@)2°3CH,Cl;] dissolved in dichloromethane
oxidized diethylamine3 at —30 °C to diethylhydroxylamine
which finally led to the formation of the insoluble diethylhy-
droxylamine-titanatrane comples (Scheme 2). Similarly,
benzylmethylsulfide6 was oxidized by [{),-3CH,CI] in
dichloromethane at 0C to benzylmethylsulfoxidg (Scheme
2). Addition of phenyllithium8 in diethyl ether/cyclohexane
at—78°C to a THF suspension of microcrystalliddprepared
from [(4)2:3CH,Cl,] by removal of CHCI, at 20°C and 102

any current masthead page for ordering information and Internet access
instructions.
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